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Channel flow with temperature-dependent viscosity
and internal viscous dissipation
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This paper uses asymptotic methods to analyse the flow in a narrow channel of a
fluid with temperature-dependent viscosity and internal viscous dissipation. When
the Nahme—Griffith number is large we show how the flow evolves from Poiseuille
flow with a uniform temperature distribution to a plug flow with hot boundary layers
on the walls. An asymptotic solution is obtained for the flow in the region of transition
from Poiseuille to plug flow and an explicit equation is derived for the pressure
gradient in terms of the local downstream co-ordinate in this transition region.

1. Introduction

The flow of fluids with temperature-dependent viscosity has been considered by
many authors. This paper follows the approximations used by Pearson (1977) who
explains the motivation for these approximations and their limits. We use the same
equations for a two-dimensional steady flow but consider the evolution of the flow as
an entry problem. The approach used is similar to that of Ockendon & Ockendon
(1977) who considered the problem in which viscous dissipation is negligible and
temperature changes within the flow are caused by heating or cooling the walls of the
channel. In the present case the temperature of the walls 7y is the same as the tempera-
ture of the inlet flow and the subsequent temperature variations are caused by internal
viscous heating.

There are three basic length scales: the width 2d of the channel, the mechanical
relaxation length I, and the thermal relaxation length I,. If the average fluid velocity
at entry is 4U and the dynamic viscosity of the fluid at temperature 7j is u,, then
l, = Ud?/u, On the assumption that the fluid has constant density p, specific heat
¢ and thermal conductivity k& we can define I, = Ud®oc/k.

The following work depends on the assumption that the Prandtl number, I,/1,, is
large so that we can reasonably assume a fully developed Poiseuille flow at constant
temperature 7, at the inlet = 0. It is also assumed that the Péclet number, I,/d,
is large so that a lubrication approximation is valid throughout the flow. We take the
viscosity in the form uqexp [ —b(T* — T;)], where T'* is the temperature and b is con-
stant. The third dimensionless quantity which then arises is the Nahme—Griffith
number, f = u, U% /k; we assume that g is large and base our asymptotic analysis
on this parameter.
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738 H. Ockendon

2. Equations

The variables are non-dimensionalized by using dy as the transverse co-ordinate
and l,z as the co-ordinate measured in the downstream direction. We introduce a
stream function Uhyr and write pressure as (4, Uly/d?) p, viscosity as g, 4 and temp-
erature as Ty+ uo U?T /k. On using the lubrication approximations the downstream

momentum equation is ,
4 0% [0y = yp', (2.1)

where p’ = dp/dx and the energy equation is
opor oy oT o°T (621/f)2

# P

oy ox odx dy oyt (2.2)

where y = e=#7T.
The boundary conditions at the inlet 2 = 0 are

T=0, dp/dz=—1, ¥ =—}+4y (2.3)
and, on the walls y = +1,
_ 31,0_ 61,0_
T =0, —@—%_0. (2.4)

The non-dimensionalization used here has been chosen so that the pressure gradient
is normalized with respect to its value at the inlet. The relationships between these
variables and those used by Pearson (1977) are listed in the appendix.

3. Boundary-layer development

The early development of the flow is similar to that described for the non-dissi-
pative case by Ockendon & Ockendon (1977). The flow in the central core remains the
same as at entry and the temperature only begins to change appreciably in thermal
boundary layers which are of thickness O(x}). Within these layers there is a similarity
solution obtained by writing

¥ =—3+2bf), T=alg0), {=(y+1)/a}

and hence obtaining the equations
w' =1 (3.1)

and 2f'g—fa')=9"+p. (3.2)

Aslong as 288 < 1, u = 1 to first order and we can solve equation (3.1) to give f = }{2
and then (3.2) becomes
g"+38% —4lg=—1. (3.3)

To obtain the correct matching condition for g as { — oo we solve the energy equation
in the core. Since « and T are both small the conduction term may be neglected and we

obtain T = 2ay2/(1—y2), (3.4)

thus showing that the temperature in the core grows linearly with z. The boundary
conditions for (3.3) are therefore

g(0)=0 and ¢g({)~1/{ as {->oc0.
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The similarity solution breaks down when the temperature in the boundary layer
becomes sufficiently large for the viscosity variation to affect the first-order flow.
This occurs when z = O(4~#). The equations in the boundary layer are then obtained
by writing x = f=3%, y = — 1+ 8%y, T = 1T and ¢ = — L + 1y to give

o2y oyt = €T (3.5a)
oy oT oyel T
£ = . b
and 3 0% oy (3:59)

The boundary conditions at the wall are

¥ =0, g-g"f=o, T=0 when 7=0 (3.6)
and matching with the Poiseuille flow in the core gives
¥~132 and T~2Z/y as 3 co. (3.7)

To determine the solution of these equations completely it is also necessary to match
with the similarity solution of (3.3) as ¥ - 0.

These boundary-layer equations do not have a similarity solution. However, they
do bear a resemblance to equations of the form 87'/ot = 92T /oy® +eT with T' = 0 on
y = 0, a. There is no steady-state solution of this problem if a is greater than some
critical value a, and it has been shown by Fujita (1969) that the solution of the un-
steady equation will blow up in finite time if @ > a,. A rigorous proof of blow-up for
equations (3.5) and (3.6) has not been established but asymptotic methods and
physical intuition support the hypothesis that 7 becomes infinitely large as Z ap-
proaches a finite value k. We assume that such a breakdown does occur and sketch how
the boundary-layer solution of (3.5) splits up asymptotically as Z - k. The basic
structure of the boundary layers in this limit is the same as that found by Pearson
(1977) in § 4.1 for his similarity solution. This structure is illustrated in figure 1.

We let the maximum value of 7 for a particular value of Z be o where o > 1 and
suppose that this maximum occurs at 7 = €¢,. We expect that the dominant effects
near this maximum of the temperature will be dissipation and conduction. To analyse
the region we put Teo+® Goetel T=k+l
and consider the structure of the solution of equations (3.5) as { - 0 from below.
Then, from (3.5a) we see that ¥ = O(e}e”) and putting i = €} ¢” ¥ in (3.5b) we obtain

3 o0 ?Lﬁ 61\1_6_1’? @) = 8—2-@4-626”6%

2T \opox oz of or *? )

Thus we need to take e, = e~ to get the expected balance in this region. We can choose
o and ¢, so that ' = 27/2) = 0 at § = 0 and then

= —2log cosh (§/4/2) and ¢ = 2log cosh (§/y2)+ 4§+ B.

As §— — oo we approach the wall and there is a region in which conduction dominates.
In this region, 7 ~ o+,/2§ and using the wall boundary condition on T gives
€, = 2~}cge, = 2~tge—17. Also the wall boundary conditions on ¥ determine 4 = ,/2
and B = —2 log 2. Hence as § - co,

T~—y20 and ¢~ 2429
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F1gure 1. Boundary-layer structure as £ > k.

In the next region we therefore put
§=0§ or y=oet(1/y2+7),
T=0¢T and ¥ =ai.

The dissipation terms are now negligible since 7' < 1 and we have a constant velocity
layer in which ¢ = 2,/2§. We can make convection and conduction balance in the
energy equation only if |{| = O(c?e~%7) and T' then satisfies a diffusion equation. We
now need yet another layer in which the velocity can adjust to match with the core
flow. Using the fact that i ~ 172 as 7 — oo we deduce that 7 = O(et?) in this layer.

Thus the boundary layer consists of an ‘inner’ temperature-dominated layer in
which 1 +y = O(e~tv f~) when { = O(c?e—#7) and so the width of this layer decreases
as Z - k. At the same time, the maximum value of T is — 2log |{| + 41log |log |¢[| +O(1)
which grows without limit as [{| - 0. This inner layer is contained in an ‘outer’
boundary layer in which the velocity adjusts and the width of this outer layer grows
like O(f-*et”) as 0 —> c0. It is clear that this solution ceases to be valid when the outer
boundary layer has spread right across the channel, which happens when o = log g.
Thus the next region of interest occurs when k— % = O(f-%(log #)?). Detailed matching
of the above asymptotic solution with the core flow confirms that p’+ 1 becomes
O(1) when |z~ k| = O(B-*(log $)?). We therefore now use this scaling and concentrate
on finding the solution as the critical point Z = k is approached.

The value of k can only be found by the complete numerical integration of equations
(3.5) with the given boundary conditions. Since we can only attempt an analysis of
these equations asymptotically when the maximum value of T is large, our approach
will never determine k analytically.
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4. Solution when p'+1 = 0(1)
(@) Core flow. We now write x = f~4% = f~3(k+ f*(log B)?%) and assume that
2"+ 1 = O(1). The core flow is now slipping relative to the walls and in the central core

¥ =3y -4y +1y, (4.1)
so that oy/dy = }(p’+1) on y = + 1. From (3.4) we see that the temperature is

O(B-%) and so satisfies the equation

oy 9T oy oT

oy 0F ToF y

to first order. Hence T = - f(). As & > —o0, p’ > — 1 and T - f-¥ 2ky?/(1 —y?)
which determines f by the implicit formula

3k +f(¥) (f)} (4.2)
3@k |

As y > —1 we now need a boundary layer to adjust the velocity and to contain the
thermal effects. The limiting values of ¢, T' as ¥ - — 1 are needed to match with the
boundary-layer solution. From (4.1) and (4.2) these values are

U=

fr~=3+3p' +1) ¥+ 1D)+0(y+1)) (4.3)
k43
~ g% 3
and T~p 72 (p’+1)i(1+y)i+0((y+1) )}. (4.4)

(b) Boundary-layer structure. The boundary-layer breakdown described in §3
indicates that there will be a boundary layer of width O(f—'(log 8)) when & = O(1).

We therefore write
y = —14f"log B) (x+yy),

where a is chosen to make y, = 0 at the maximum value of 7. We also write

¥ =—%+p7"(log B)¥1(&, y1)
and T = pg(log B)T1(Z, yy)-

The stream function is now of the right order of magnitude to match the core flow but,
as we shall see later, we need to consider another internal constant-velocity layer in
order to make the temperature match with its value in the core.

The equations in this boundary layer are thus

2
%yl{ =—p' 57 og B (4.5)

and %_6_1;1_% a._qi_a_T_ ’Z(IOgﬂ ﬂTr‘l (46)

As long as T} < 1, the right-hand sides of both these equations are negligible and on
matching with (4.3) we have, from (4.5),

Y1=30"+1) (1 +0) (4.7)
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for y, > 0, where c, is an arbitrary function of £. In (4.6) this gives

or, 1 ydey 0Ty 0%y
o+ -5 (e o B) 2 = 2
where p" = dp’ /d%.
The above approximation breaks down as T} - 1. We may choose & so that 7} - 1
as y; ~> 0 and then rescale near y, = 0 by putting

(4.8)

1
$h= m Y2
1 ”
and =1 +@T2(x,y2).

It can now be seen that in order to obtain a non-trivial solution for ¢ which is capable
of satisfying the no-slip condition on the wall we must take ¢, = 0 in (4.7). We then
write

Y= logﬂ% Z, y,)

so that equations (4.5) and (4.6) become

%Yy

P = —p'exp[Ty],

T, |,
R 2+ p'2exp[Ty]=0 (4.9)

on neglecting terms of O((log #)~2). We solve equations (4.9) using 67,/dy, = 0 at
Yo = 0 and ¥y, 99, /0y, - 0 as y, - — o0 to obtain

ot —P'Ys
= 2(C —2log cosh (\/2 e—c) (4.10)
2 P'Yp c 2 log 2
and Yo = —_p,log cosh (J2 )+ /2 €€ y,+ -,

where C'is an arbitrary function of & Matching with (4.7) as y, > <o implies that
O = log (' +1)/6.4/2).

By using the condition on the wall that 7} = 0 when y, = —~a we can determine
a=6/[(-p) (P +1)].

We now have to find a solution of (4.8) with ¢, = 0 which matches with (4.10) as
¥, —> 0. This matching condition leads to

T, ~1+3p'(p'+ 1)y, asy, >0 (4.11)

and we must also have that
7,0 as y, > 0.

It can now be seen that equation (4.8) with boundary conditions (4.11) has a similarity
solution if we write
T, =g(n) where 7= (-p")(p'+1)y,
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Ficure 2. Variation of pressure gradient with &.

The equation satisfied by g is

o

. p’ g
4.12
XS (412

with g ~ 1—}7 as 9 > 0 and ¢ > 0 as - co. Thus a similarity solution is possible if

pll
— =—2, 4.13
p3(p'+1) (.13)

where A is some constant. We can then solve equation (4.12) for g to obtain

1
g= 1—6f0 exp [ — tign7r?]dr (4.14)

and A = y47. Thus equation (4.13) can be integrated to give

T —p' 1 1
= P A DI 4,15
3 &+ const. = log (1 ,)+ ke 2 ( )

This expression for p’ covers the transition from p’ —»>—1 as & >—o0 to p’ - 0 as
& >+ oo . It is plotted in figure 2.

The terms neglected in deriving (4.9) are of O((log £)~2) which is small only if g is
very large. However, within these limits we have obtained an analytic expression for
the pressure gradient in (4.15). Unfortunately the constant of integration in (4.15)
can only be determined by matching with the solution of (3.5) which we have been
unable to solve analytically. Thus we are still not in a position to determine the

x
pressure, f p'dz, without recourse to numerical methods.
0

The final step necessary to complete this part of the solution is to match the tempera-
ture 7, with the temperature in the core region. As y; - oo,

12 mt
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Dominant effects ll/y ‘Magnitude of T

y+1
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F1ours 3. Boundary-layer structure when £—k = O(f-3(log f)?).

and we need to introduce a narrow free layer within which the velocity is constant
but the temperature adjusts so that we can match with the algebraic form of the
temperature given by (4.4). We put 7 = 127-#(8% 4 28-%), where & is a large parameter
and z is the new variable in the y direction. Using (4.16) we write T, = ¢~* §-16, where
0 — m}e % as z >—oc0. Throughout this layer, ¥ = —}+3(p'+1) (y+ 1) and so the
equation satisfied by 0 is

%0 9 o0

@iy

Thus a balance between conduction and convection at constant velocity is achieved
in this layer. The solution for 0 is

6 = mte2 4 B(3).

Matching with (4.4) shows that éte—? = (log )% and B(@) = (- p') nik/2./2.
The structure of the boundary layers when # = O(1) is illustrated in figure 3.
The similarity variable 5 is given by

ptlog B

Y=+

(n+6)
so the solution breaks down when

A ~p'(p'+1) = O(flog B).

AsF—>—o00,p" + 1 = O(exp[ + 447Z]) from (4.15) and so we see that the solution will break
down as& — (— 24 /m)log §. To match properly with the earlier flow we would therefore
need another internal scaling for #. However, since we have been unable to determine
the earlier flow analytically there is nothing to be gained by such detailed matching
procedures.

As & ~+00, we see from (4.15) that p’ ~ — (J47%)"% and the solution will therefore
only break down in this direction when & = O(f%log £)~?), which is when x = 0(1).
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Ficure 4. Comparison of numerical and analytic results:
, asymptotic solution; X, numerical results.

The solution as & -> 4 00 contains the similarity solution obtained in § 4.1 of the paper
by Pearson (1977).

5. Final remarks

The matching arguments used in this solution are self-consistent as far as they go.
There is a gap in the matching in the boundary layer when z = O(1) and the full
solution of equations (3.5) is relevant. Our solutions are physically plausible and since
they describe a dramatic stage in the flow development, where the pressure gradient
changes rapidly, may be of some interest.

The analysis predicts a pressure gradient with a point of inflexion and as a result
the thermal boundary layer width first decreases and then increases as  increases.
From the expression given in (4.10), the maximum value for 7' during the transition
phase is

Toux = B-110g f(1 +20log f) = -1og (FB(p’ +1)?)

on substituting for C. Thus as p’ - 0, the maximum value of 7" approaches the fixed
value -1 log (&/).

An exactly analogous solution can be obtained for flow along an asixymmetric
pipe. The pressure gradient (again normalized with respect to its value at the inlet)
satisfies equation (4.15) with ;% replaced by z35%.

A numerical solution of the full problem for axisymmetric flow with £ = 64 x 104
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has been obtained by C. A. Heiber of Cornell University. This solution exhibits the
qualitative features predicted by the asymptotic analysis. A comparison of the values
of Tiyax and D, the non-dimensional distance of this maximum from the wall, found
from the numerical solution of the full equations and from the asymptotic solution is
shown in figure 4. The discrepancies can to some extent be accounted for by the fact
that log # = 13-37 is not really very large in this case.

Appendix
The relationships between the variables used here and those used by Pearson (1977)
are listed below.

This paper Pearson’s paper
Channel width 2d h
Non-dimensional transverse co-ordinate y 29
4
Non-dimensional downstream co-ordinate x 3P, I3
]
Non-dimensional stream funection ¥ 20
Reference velocity U 3V
Non-dimensional pressure gradient P’ -%iﬂg
Non-dimensional temperature T %
Nahme-Griffith number g 9G
Flow rate 4Ud Vh

REFERENCES

Fusira, H. 1969 Bull. Am. Math. Soc. 75, 132.
OckeNpoN, H. & OckeExnoOx, J. R. 1977 J. Fluid Mech. 83, 177.
Pearson, J. R. A. 1977 J. Fluid Mech. 83, 191.



