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Channel flow with temperature-dependent viscosity 
and internal viscous dissipation 

By HILARY OCKENDON 
Somerville College, Oxford 

(Received 11 July 1975 and in revised form 16 Xovember 1978)  

This paper uses asympt.otic rnet,hods to  analyse the flow in a narrow channel of a 
fluid with temperature-dependent viscosity and internal viscous dissipation. When 
the Nahme-Griffith number is large we show how the flow evolves from Poiseuille 
flow with a uniform temperature distribution to a plug flow with hot boundary layers 
on the walls. An asymptotic solution is obtained for the flow in the region of transition 
from Poiseuille to plug flow and an explicit equation is derived for the pressure 
gradient in terms of the local downstream co-ordinate in this transition region. 

1. Introduction 
The flow of fluids with temperature-dependent viscosity has been considered by 

many authors. This paper follows the approximations used by Pearson (1977) who 
explains the motivation for these approximations and their limits. We use the same 
equations for a two-dimensional steady flow but consider the evolution of the flow as 
an entry problem. The approach used is similar to that of Ockendon & Ockendon 
(1977) who considered the problem in which viscous dissipation is negligible and 
temperature changes within the flow are caused by heating or cooling the walls of the 
channel. I n  the present case the temperature of the walls To is the same as the tempera- 
ture of the inlet flow and the subsequent temperature variations are caused by internal 
viscous heating. 

There are three basic length scales: the width 2d of the channel, the mechanical 
relaxation length I ,  and the thermal relaxation length 1,. If the average fluid velocity 
a t  entry is &U and the dynamic viscosity of the fluid a t  temperature To is ,uo, then 
I ,  = Ud2p/,uo. On the assumption that the fluid has constant density p, specific heat 
c and thermal conductivity k we can define 1, = Ud2pc/k.  

The following work depends on the assumption that the Prandtl number, 1 , / 4 ,  is 
large so that we can reasonably assume a fully developed Poiseuille flow a t  constant 
temperature To at the inlet x = 0. It is also assumed that the PBclet number, Z,/d, 
is large so that a lubrication approximation is valid throughout the flow. We take the 
viscosity in the form ,uo exp [ - b(T* - To)], where T* is the temperature and b is con- 
stant. The third dimensionless quantity which then arises is the Nahme-Griffith 
number, p = ,uo U2b/k;  we assume that p is large and base our asymptotic analysis 
on this parameter. 
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2. Equations 
The variables are non-dimensionalized by using d y  as the transverse co-ordinate 

and 12x as the co-ordinate measured in the downstream direction. We introduce a 
stream function U h p  and write pressure as (yo U121d2)p, viscosity aspop and temp- 
erature as To +yo U2T/k.  On using the lubrication approximations the downstream 
momentum equation is 

where p‘ = d p / d x  and the energy equation is 

where y = e-lT. 
The boundary conditions a t  the inlet x = 0 are 

and, on the walls y = & 1, 

The non-dimensionalization used here has been chosen so that the pressure gradient 
is normalized with respect to its value a t  the inlet. The relationships between these 
variables and those used by Pearson (1977) are listed in the appendix. 

3. Boundary-layer development 
The early development of the flow is similar to that described for the non-dissi- 

pative case by Ockendon & Ockendon (1977). The flow in the central core remains the 
same as a t  entry and the temperature only begins to change appreciably in thermal 
boundary layers which are of thickness O(x$. Within these layers there is a similarity 
solution obtained by writing 

@ = - Q -t x”({ ) ,  T = X”s({), 5 = ( y  + I)/.+ 

and hence obtaining the equations 
pf“ = 1 

and f ( f ’ g - f g ’ )  = g ” + y .  ( 3 4  

As long as xfp < 1, y = 1 to first order and we can solve equation (3 .1 )  to give f = $C2 
and then (3 .2 )  becomes 

To obtain the correct matching condition for g as { + 00 we solve the energy equation 
in the core. Since r and T are both small the conduction term may be neglected and we 
obtain 

T = 2xy2/ (1  - y 2 ) ,  

thus showing that the temperature in the core grows linearly with x. The boundary 
conditions for (3 .3 )  are therefore 

g(0) = 0 and g(5 )  - 1/{ as {-+ 00. 

g” + g g ’  - #{g = - 1. (3 .3 )  

(3 .4 )  
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The similarity solution breaks down when the temperature in the boundary layer 
becomes sufficiently large for the viscosity variation to affect the first-order flow. 
This occurs when x = O(p-8). The equations in the boundary layer are then obtained 
by writing x = p-83, y = - 1 + P-*g, T = P-lF and @ = - Q + P-IP to give 

p$/agZ = eT ( 3 . 5 ~ )  

and 
a$aT a$aF a2T - _ _ - - _ -  - - + e T .  
ag az az ag a g 2  

The boundary conditions at the wall are 

L 

4 = 0, T = O  when & = O  

and matching with the Poiseuille flow in the core gives 

$-  @j2 and T-? /g  as ~ - + c o .  

(3 .5b)  

(3.6) 

(3.7) 

To determine the solution of these equations completely it is also necessary to match 
with the similarity solution of (3.3) as X + 0. 

These boundary-layer equations do not have a similarity solution. However, they 
do bear a resemblance to equations of the form aT/at = a2T/ay2+ eT with T = 0 on 
y = 0, a. There is no steady-state solution of this problem if a is greater than some 
critical value a, and it has been shown by Fujita (1969) that the solution of the un- 
steady equation will blow up in finite time if a > a,. A rigorous proof of blow-up for 
equations (3.5) and (3.6) has not been established but asymptotic methods and 
physical intuition support the hypothesis that F becomes infinitely large as 5 ap- 
proaches a finite value k. We assume that such a breakdown does occur and sketch how 
the boundary-layer solution of (3.5) splits up asymptotically as + k. The basic 
structure of the boundary layers in this limit is the same as that found by Pearson 
(1977) in 3 4.1 for his similarity solution. This structure is illustrated in figure 1. 

We let the maximum value of F for a particular value of 2 be cr where CT 9 1 and 
suppose that this maximum occurs at  T j  = el. We expect that the dominant effects 
near this maximum of the temperature will be dissipation and conduction. TO analyse 
theregionwe Put F = C T + f j ? ,  g = “ 1 + e 2 Q ,  z = k + g  

and consider the structure of the solution of equations (3.5) as 5 -+ 0 from below. 
Then, from ( 3 . 5 a )  we see that $ = O(ei e“) and putting P = 6: e‘ $ in (3.5 b )  we obtain 

Thus we need to take e2 = e-9. to get the expected balance in this region. We can choose 
CT and el so that fj? = ap/&j = 0 a t  Q = 0 and then 

9 = - 2 log cosh (9 /1 /2)  and $ = 2 log cosh (9142)  + AQ + B. 

As Q+ - ca we approach the wall and there is a region in which conduction dominates. 
In this region, T EJ a + J 2  Q and using the wall boundary condition on T gives 
el = 2-*m2 = 2-be-3. .  Also the wall boundary conditions on $ determine A = 1/2 
and B = - 2 log 2.  Hence as Q -+ co, 

$--,I@ and $ -  21/29. 
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FIGURE 1. Boundary-layer structure as 3 + k. 

In the next region we therefore put 

Q = ay” or jj = ae-4r(I/$+y”), 

T = a P  and $=a$. 

The dissipation terms are now negligible since 5! < 1 and we have a constant velocity 
layer in which fi = 2J2y”. We can make convection and conduction balance in the 
energy equation only if 151 = O(a2e-4“) and then satisfies a diffusion equation. We 
now need yet another layer in which the velocity can adjust to match with the core 
flow. Using the fact that  $ N 4 i j 2  as ij + 00 we deduce that 

Thus the boundary layer consists of an ‘inner ’ temperature-dominated layer in 
which 1 + y = O(e-4“/3-4) when 5 = O(a2e-a“) and so the width of this layer decreases 
a s ? +  k. At the same time, the maximum value o f p i s  - 2 log 161 +410g /log 1611 +O(l )  
which grows without limit as /c/ .+ 0. This inner layer is contained in an ‘outer’ 
boundary layer in which the velocity adjusts and the width of this outer layer grows 
like O(p-4 e4“) as a -+ 00. It is clear that  this solution ceases to  be valid when the outer 
boundary layer has spread right across the channel, which happens when a = log p. 
Thus the next region of interest occurs when k - E = O(/3-4(log/3)2). Detailed matching 
of the above asymptotic solution with the core flow confirms that p ’ +  1 becomes 
O( 1)  when IE - kl = O(/?-*(log /3)2),. We therefore now use this scaling and concentrate 
on finding the solution as the critical point 2 = k is approached. 

The value of k can only be found by the complete numerical integration of equations 
(3.5) with the given boundary conditions. Since we can only attempt an analysis of 
these equations asymptotically when the maximum value of is large, our approach 
will never determine k analytically. 

= O(e4“) in this layer. 
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4. Solution when p' + 1 = O( 1) 

(a) Core $ow. We now write x = p-+k = p-8(k+p-*(log /?)2Z) and assume that 
p' + 1 = O( 1). The core flow is now slipping relative to the walls and in the central core 

(4.1) 4 = W Y 3  - 4P'Y + i Y ,  

so that a$/ay = +(p'+ 1 )  on y = 2 1. From (3.4) we see that the temperaturc is 
O(P-$) and so satisfies the equation 

to first order. Hence T = p" f ($). As P -+ -a, p' + - 1 and T -+ p 4  2ky2/(1 - y2), 
which determines f by the implicit formula 

As y -+ - 1 we now need a boundary layer to adjust the velocity and to contain the 
thermal effects. The limiting values of $, T as y + - 1 are needed to match with the 
boundary-layer solution. From (4.1) and (4.2) these values are 

and (4.4) 

(b )  Boundary-layer structure. The boundary-layer breakdown described in 5 3 
indicates that there will be a boundary layer of width O(P-l(log p))  when 2 = O( 1). 
We therefore write 

Y = - 1 +P-'(log P )  (a  + YJ, 
where a is chosen to make y1 = 0 a t  the maximum value of T. We also write 

and 

The stream function is now of the right order of magnitude to match the core flow but, 
as we shall see later, we need to consider another internal constant-velocity layer in 
order to make the temperature match with its value in the core. 

The equations in this boundary layer are thus 

and 

As long as Tl < 1, the right-hand sides of both these equations are negligible and on 
matching with (4.3) we have, from ( 4 4  

$1 = 8 ( P ' + 1 ) ( Y l + C l )  (4.7) 
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FIGURE 2. Variation of pressure gradient with Z. 

The equation satisfied by g is 
P" 7s' 

9'' = p'3(p' + 1) 3' (4.12) 

with g - I - 87 as 7 -+ 0 and g -+ 0 as 7 -+ m. Thus a similarity solution is possible if 

where h is some constant. We can then solve equation (4.12) for g to obtain 

and h = &r. Thus equation (4.13) can be integrated to give 

7l 1 1  
24 

----Z+const. = log 

(4.13) 

(4.14) 

(4.15) 

This expression for p' covers the transition from p' -+ - 1 as 2 -+ - 00 to p' -+ 0 as 
2 -+ + 00 . It is plotted in figure 2. 

The terms neglected in deriving (4.9) are of O((1og /3)-z) which is small only if /3 is 
very large. However, within these limits we have obtained an analytic expression for 
the pressure gradient in (4.15). Unfortunately the constant of integration in (4.15) 
can only be determined by matching with the solution of (3.5) which we have been 
unable to solve analytically. Thus we are still not in a position to determine the 

pressure, p'dx, without recourse to numerical methods. 
/OX 

The final step necessary to complete this part of the solution is to match the tempera- 
ture TI with the temperature in the core region. As y1 + 00, 

(4.16) 
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t f(p '  + 1) o(p- le-*6- f logp)  1 convection 

Conduction and 
convection f(p' + I o(L3-I logp) 

J 
o(0lp-I logp) 

0(0lp- ' )  Conduction and dissipation p-'logp + O(0-l) 

O(Cup-'logfl) Conduction only 0 O(p-'logp) 
t 

,20lp-'G+logp/7r+ 

1 

' ap-' logp 

, ,  

and we need to introduce a narrow free layer within which the velocity is constant 
but the temperature adjusts so that we can match with the algebraic form of the 
temperature given by (4.4). We put 7 = 12n-4(64 + zs- t ) ,  where S is a large parameter 
and z is the new variable in the y direction. Using (4.16) we write !PI = e-8 3-40, where 
0 + 7r-4 e-22 as z -+ - co. Throughout this layer, @ = - Q + Q(p' + 1) (y + 1) and so the 
equation satisfied by 8 is 

aw ae 
a22 ax 
-+2-  = 0. 

Thus a balance between conduction and convection a t  constant velocity is achieved 
in this layer. The solution for 8 is 

e = n-4 e-2a + ~ ( 2 ) .  

Matching with (4.4) shows that 83 e--6 = (log /3)-$ arid B(k) = ( -p')"ik/2 4 2 .  
The structure of the boundary layers when Z = O( 1) is illustrated in figure 3. 
The similarity variable 7 is given by 

y = - l +  /3-'logP (r + 6) 
( -P') (P' + 1) 

so the solution breaks down when 

-p ' (p '+ 1) = o(p-llogp). 

Ask+--oo,p'+ 1 = O(exp[ +,1,n2])from (4.15)andsoweseethatthesolutionwillbreak 
down ask --f ( - 24,'~) log p. To match properly with the earlier flow we would therefore 
need another internal scaling for 2.  However, since we have been unable to determine 
the earlier flow analytically there is nothing to be gained by such detailed matching 
procedures. 

As k 4 + 00, we see from (4.15) that  p' N - (Ark)-$ and the solution will therefore 
only break down in this direction when Z = 0(p2(log p)-2), which is when x = O(1). 
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FIGURE 4. Comparison of numerical and analytic results: 
-, asymptotic solution; x , numerical results. 

The solution as 2 --> + co contains the similarity solution obtained in 5 4.1 of the paper 
by Pearson (1977). 

5. Final remarks 
The matching arguments used in this solution are self-consistent as far as they go. 

There is a gap in the matching in the boundary layer when X: = O(1) and the full 
solution of equations (3.5) is relevant. Our solutions are physically plausible and since 
they describe a dramatic stage in the flow development, where the pressure gradient 
changes rapidly, may be of some interest. 

The analysis predicts a pressure gradient with a point of inflexion and as a result 
the thermal boundary layer width first decreases and then increases as x increases. 
From the expression given in (4.101, the maximum value for T during the transition 
phase is 

T,,, = /3-l log /3( 1 + 2C/l0g ,8) = /3-' log (&/3(p,' + 1)') 
on substituting for C .  Thus as p,' +. 0, the maximum value of T approaches the fixed 
value /3-l log (&3). 

An exactly analogous solution can be obtained for flow along an asixymmetric 
pipe. The pressure gradient (again normalized with respect to its value at  the inlet) 
satisfies equation (4.15) with &Z replaced by &2. 

A numerical solution of the full problem for axisymmetric flow with /3 = 64 x lo4 
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has been obtained by C. A. Heiber of Cornell University. This solution exhibits the 
qualitative features predicted by the asymptotic analysis. A comparison of the values 
of T,,, and D,  the non-dimensional distance of this maximum from the wall, found 
from the numerical solution of the full equations and from the asymptotic solution is 
shown in figure 4. The discrepancies can to some extent be accounted for by the fact 
that log p = 13.37 is not really very large in this case. 

Appendix 

are listed below. 
The relationships between the variables used here and those used by Pearson (1977) 

This paper Pearson's paper 

Channel width 2d h 
Non-dimensional transverse co-ordinate Y 27 

Non-dimensional downstream co-ordinate X 

Non -dimensional stream function 
Reference velocity 
Non-dimensional pressure gradient 
Non-dimensional temperature 
Nahme-Griffith number 
Flow rate Q 

$ 
U 
P' 
T 
P 

3Ud 
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